Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Year range
1.
Acta bioquím. clín. latinoam ; 57(1): 3-15, mar. 2023. graf
Article in Spanish | LILACS-Express | LILACS | ID: biblio-1513533

ABSTRACT

Resumen La uroporfirinógeno descarboxilasa humana (UROD-h) es la quinta enzima del camino biosintético del hemo y su actividad deficiente, relacionada a mutaciones en su gen, se encuentra asociada a un subgrupo de porfirias. El objetivo de este trabajo fue estudiar la relación entre la dimerización de la enzima y su actividad enzimática y comprobar si la dimerización de UROD-h es imprescindible tanto para la primera etapa de la reacción (urogen→heptagen), como para la segunda etapa (heptagen→coprogen). Con ese objetivo, se expresó y purificó la UROD-h hasta homogeneidad, se analizó el comportamiento dímero-monómero bajo distintas condiciones que pudieran desplazar el equilibrio de dimerización y se evaluó la actividad enzimática en dichas condiciones. Los resultados obtenidos sugieren que la especie activa para la primera etapa de la reacción es el homodímero y que tanto el dímero como el monómero se comportan como especies activas para la segunda etapa de la reacción. Se propone que mutaciones clínicas como la Y311C, existentes en pacientes con porfiria cutánea tarda, podrían afectar la estabilidad del dímero y podrían ser el blanco para futuras terapias génicas.


Abstract Human uroporphyrinogen decarboxylase (UROD-h) is the fifth enzyme in the heme biosynthetic pathway and its deficient activity, related to mutations in its gene, is associated with a subset of porphyrias. The objective of this work was to study the relationship between the dimerisation of the enzyme and its enzymatic activity and to verify if the dimerisation of UROD-h is essential both for the first stage of the reaction (urogen→heptagen), and for the second stage (heptagen→ coprogen). With this objective, the UROD-h was expressed and purified to homogeneity, the dimer- monomer behaviour was analysed under different conditions, which could shift the dimerisation equilibrium, and the enzymatic activity was evaluated under these conditions. The results obtained suggest that the active species for the first stage of the reaction is the homodimer, and both the dimer and the monomer behaved as active species for the second stage of the reaction. It is proposed that clinical mutations such as Y311C, existing in porphyria cutanea tarda patients, could affect dimer stability and could be the target of future gene therapies.


Resumo A enzima uroporfirinogênio descarboxilase humana (UROD-h) é a quinta enzima da via biossintética do heme e sua atividade deficiente, relacionada com mutações em seu gene, está associada a um subgrupo de porfirias. O objetivo deste trabalho foi estudar a relação entre a dimerização da enzima e sua atividade enzimática e comprovar se a dimerização da UROD-h é imprescindível tanto para a primeira etapa da reação (urogênio→heptagênio), quanto para a segunda etapa (heptagênio→coprogênio). Com esse objetivo, a UROD-h foi expressa e purificada até a homogeneidade, o comportamento de dímero-monômero foi analisado sob diversas condições, que puderam deslocar o equilíbrio de dimerização, e a atividade enzimática foi avaliada em tais condições. Os resultados obtidos sugerem que a espécie ativa para a primeira etapa da reação é o homodímero, e tanto o dímero quanto o monômero se comportam como espécies ativas para a segunda etapa da reação. Propõe-se que mutações clínicas como Y311C, existentes em pacientes com porfiria cutânea tardia, poderiam afetar a estabilidade do dímero e poderiam ser o alvo de futuras terapias gênicas em porfiria cutânea tardia.

2.
São Paulo; s.n; s.n; 2019. 94 p. graf, tab.
Thesis in Portuguese | LILACS | ID: biblio-1024757

ABSTRACT

L-asparaginase é um inibidor eficiente do crescimento tumoral, usado em sessões de quimioterapia contra a Leucemia Linfoblástica Aguda (LLA), resultando na remissão completa da doença em 90% dos pacientes tratados. A L-asparaginase II de Saccharomyces cerevisiae (ScASNaseII) tem alto potencial de superar os efeitos adversos da L-asparaginase de bactéria, porém sua produção endógena resulta em uma proteína hipermanosilada e, consequentemente, imunogênica. A cepa de Pichia pastoris Glycoswitch tem a maquinaria para expressar e secretar altas quantidades de enzima com glicosilação humanizada. Nesse trabalho, descrevemos o processo genético para expressar a ScASNaseII no meio extracelular pela P. pastoris Glycoswitch, e também os parâmetros bioquímicos, perfil cinético, citotoxicidade contra células leucêmicas e a interferência da glicosilação na atividade da enzima obtida. Nossos dados mostram que a cepa aplicada foi capaz de expressar ScASNaseII no meio extracelular passível de purificação de proteínas contaminantes com apenas um passo cromatográfico. A atividade específica para asparagina foi 218,2 UI/mg e a atividade glutaminásica representou 3,1% da atividade asparaginásica. Os parâmetros cinéticos foram KM = 120,5 µM e a eficiência catalítica de 3,8 x 105 M-1s-1. Análises por meio de gel nativo sugerem uma conformação tetramérica de aproximadamente 150 kDa. Essa é uma nova estratégia de produzir essa enzima de forma extracelular, com mais facilidade de purificação e com melhores propriedades biotecnológicas


L-asparaginase is an efficient inhibitor of tumor development, used in chemotherapy sessions against acute lymphoblastic leukemia (ALL) tumor cell; its use results in 90% complete remission of the disease in treated patients. Saccharomyces cerevisiae's L-asparaginase II (ScASNaseII) has a high potential to overcome the side effects of bacteria L-asparaginase, but the endogenous production of it results in hypermannosylated immunogenic enzyme. However, Pichia pastoris Glycoswitch strain has the machinery to express and secrete high quantity of the enzyme and with humanized glycosylation. Here we describe the genetic process to acquire the ScASNaseII in the extracellular medium expressed by P. pastoris Glycoswitch, and the biochemical properties of the resultant enzyme, kinetic profile, cytotoxicity against ALL cell line and the interference of glycosylation in its activity. Our data show that the strain employed is able to express extracellular asparaginase active and possible to be purified of contaminant proteins using a single chromatographic step. The specific activity using asparagine was 218.2 IU.mg-1 and the glutaminase activity represents 3.1% of its asparaginase activity. The kinetics parameters were KM=120.5 µM and a catalytic efficiency of 3.8x105 M-1s-1. The Native-PAGE suggested a tetrameric protein conformation, with approximately 150 kDa. This is a novel strategy to produce this enzyme extracellularly, easier to purify and with better biotechnological properties


Subject(s)
Pichia/isolation & purification , Asparaginase/analysis , Saccharomyces cerevisiae/isolation & purification , Glycosylation , Recombinant Proteins , Precursor Cell Lymphoblastic Leukemia-Lymphoma/diagnosis
SELECTION OF CITATIONS
SEARCH DETAIL